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Abstract
This paper sheds light on non-commutativity in quantum theory as regards
theoretical estimation. In it, we calculate the quantum Cramér–Rao-type bound
for many cases, by use of a newly proposed powerful technique. We also discuss
the use of collective measurement in statistical estimation.

PACS numbers: 03.67.−a, 03.65.Ta, 05.30.−d

1. Introduction

Quantum estimation theory, or the theory of statistical estimation of unknown density operators,
was introduced by Helstrom [2, 3], motivated by the wish to optimize detection processes for
optical communication systems. Recently, estimation of unknown states has been attracting
the attention of many physicists [5–7].

In this paper, for simplicity, it is assumed that the unknown state is a member of a model
M = {ρ(θ)|θ ∈ � ⊂ R

m}, or a subset of the totality of the density operators, and that the
finite-dimensional parameter θ is to be estimated statistically. Further, it is also assumed that
a large number of i.i.d. samples of the unknown state are given, and we study the lower bound
of the asymptotic error of the estimate.

Recently, there have been several studies based on the variation of the measuring precision
with respect to the number of samples [7, 8, 29, 31, 32]. Nagaoka [9–11] studied, for the first
time, asymptotic aspects of estimation of the density operator. He pointed out that the quasi-
quantum Cramér–Rao-type (CR-type) bound, or the lower bound for the asymptotic mean
square error of the estimate which does not use a collective measurement, can be ‘single-
letterized’. (Later, in 2000, Gill and Massar gave a similar theorem. The difference between
these works is explained briefly in section 2.) His studies also include the investigation of the
use of collective measurement in the statistical estimation of the one-dimensional parameter
model. Massar and Popescu [8] and Hayashi [12] studied the asymptotic theory of the total-
space model, or the totality of the pure states in a given Hilbert space, which we also study
later. Hayashi and Matsumoto [13] showed that the quantum CR-type bound, which is also
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defined later, gives the lower bound for the asymptotic mean square error of the estimate which
uses the collective measurement.

The determination of an explicit expression for the quasi-quantum CR-type bound has
been an important aim since the foundation of quantum estimation theory. In fact, it was
Helstrom [2, 3] who determined the bound of the one-dimensional model which consists of
faithful states, or states whose density matrix is of full rank.

In the case of the multi-dimensional parameter model, this problem still remains
challenging, because the underlying non-commutativity makes the problem complicated. In
fact, when the author’s research was starting, the bound was determined only for several
specific models. For models which consist of faithful states, Yuen, Lax, and Holevo [14, 15]
determined the bound of the Gaussian state model, and Nagaoka and Hayashi [16, 17] (and
later on Gill and Massar [29] independently) solved the problem in the case of faithful spin- 1

2
models. Fujiwara and Nagaoka [18–20] started the study of the quasi-quantum CR-type bound
of the pure-state model, a model which consists of pure states, and determined the bound in
the case of a one-dimensional parameter model and a two-dimensional coherent model.

In this paper, after the preliminaries in sections 2, 3, a new and powerful approach for
determining the quasi-quantum CR-type bound of the pure-state model is proposed in section 4.
Theorem theorem:commute and theorem theorem:simple, the key to this new approach,
reduce the calculation of the quasi-quantum CR-type bound, which includes optimization
of the positive-operator-valued measure (POM), to an easier problem, which just includes
optimization of vectors of small dimension. In sections 6–8, by use of the method, the quasi-
quantum CR-type bound is calculated for wide ranges of pure-state models.

One might suggest that the calculation of the quasi-CR-type bound is not that fundamental,
for this is the bound achieved for some restricted class of measurement. Therefore, we also
study the relation between the quasi-CR-type bound and the quantum CR-type bound, which
is obtained by allowing use of any type of collective measurement. In section 2, the definitions
and some basic facts about these bounds are stated, and in section 5, it is shown that these two
bounds coincide with each other in any kind of pure-state model. Because of this identity, our
new method of calculation of the quasi-quantum CR-type bound actually gives the quantum
CR-type bound.

For the proof of this identity, we make use of the pure-state version of Holevo’s bound,
which is used in the study of the Gaussian model, and the fact that Holevo’s bound is achievable
in an arbitrary pure-state model. This does not mean that the determination of the bound is
completed, for Holevo’s bound still requires minimization about some variables.

The third topic in the paper is the relation between the non-commutativity and the
eigenvalues of the linear transform D, which is defined in section 3 in relation to complex
structure. In section 8, we study the two-dimensional parameter model to show that the absolute
value of the eigenvalues of D is a good measure of non-commutativity. In sections 6 and 7,
we treat the model with an arbitrary dimension parameter, but only in special cases. Section 6
deals with the case where D = 0, or the commutative case, while in section 7, the strongest
non-commutativity case, or the case where the absolute values of the eigenvalues of D are
maximal, is discussed.

2. The POM, asymptotic bounds, and locally unbiased measures

Let σ(Rm) be a σ -field in the space R
m. Whatever measuring apparatus is used, or whatever

calculation is being made, the probability that the estimate θ̂ lies in a measurable set B in R
m

will be given by PMθ (B) = tr ρ(θ)M(B), whereM is a POM, or a mapping of a measurable set
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B ∈ σ(Rm) to non-negative Hermitian operators in the separable Hilbert space H, such that

M(φ) = O, M(Rm) = I,

M

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

M(Bi) (Bi ∩ Bj = φ, i �= j),

(see [3, p 53], and [15, p 50]). Conversely, there is a measuring apparatus corresponding to
any POMM [21, 22].

Denote the mean square matrix ofM by Vθ [M] = [
∫
(θ̂ i − θ i)(θ̂ j − θj ) tr ρ(θ)M(dθ̂ )],

and, as the measure of accuracy, let us take TrGVθ [M], whereG is a strictly positive symmetric
real matrix. If G = diag(g1, . . . , gm), TrGVθ [M] is the weighted sum of mean square errors
of the estimates θ̂ i of each component θ i of the parameter.

Let us suppose that we are given N i.i.d. pairs ρ(θ)⊗N of the unknown state ρ(θ). Then,
if the estimate is appropriate, the mean square error of the estimate will be, at most, O(1/N).
Therefore, the infimum of N times the mean square error of the estimate is of interest.

The sequence {MN } of POM, where MN is a POM in H⊗N , is said to be asymptotically
unbiased if limN→∞ Eθ [MN ] = θ and limN→∞

∫
θ̂ j tr ∂kρ(θ)MN(dθ̂ ) = δ

j

k hold true for any
θ ∈ �.

Let us define CM0 to be the totality of adaptive measurements, where POM M(1) in H
is applied to the first sample, and the measurement which corresponds to POM M(2) in H
is applied to the second sample, and so on. (The choice of M(k) is generally dependent on
the outcome of measurements M(1), . . . ,M(k−1).) Also, we denote by CM1 the totality of
separable measurements, or measurements such that, for any measurable set B, MN(B) is
a convex combination of operators which is written as

⊗N
j=1Aj in terms of non-negative

operators Aj (j = 1, . . . , N) in H.
Although it was pointed out by Bennett et al [30] that CM0 is strictly smaller than CM1,

their minimum mean square errors are the same up to O(1/N). More concretely, it is known
that{

lim
N→∞

N TrGVθ [MN ]|{MN } ∈ CM0,MN : asymptotically unbiased
}

(1)

= inf
{

lim
N→∞

N TrGVθ [MN ]|{MN } ∈ CM1,MN : asymptotically unbiased
}

(2)

= inf
{

TrGVθ [M]|M is locally unbiased at θ
}
, (3)

where a POMM is said to be locally unbiased at θ ∈ �, if

Eθ [M] =
∫
θ̂ tr ρ(θ)M(dθ̂ ) = θ,

∫
θ̂ j tr ∂kρ(θ)M(dθ̂ ) = δ

j

k , j, k = 1, . . . , m.

Equality (1) = (3) was obtained by Nagaoka [9, 13], and (2) = (3) (or an equivalent relation)
was obtained by Gill and Massar [29]. Notice that (3) is much easier to treat than (1) and (2),
for (3) is an optimization over measurements in H, while (1) and (2) are optimizations over
measurements in H⊗N . We denote (1) = (2) = (3) by Cθ(G), and call this the quasi-quantum
CR bound. The name ‘quasi-’ comes from the fact that the bound is achieved by some restricted
class of measurements. (Correctly speaking, in Gill and Massar’s paper [29], they express (3)
using Fisher information, which is very useful in the following calculations in their paper.
However, this point is not essential in our context.)

We also define,

C
Q
θ (G) ≡ inf

{
lim
N→∞

N TrGVθ [MN ]|MN : asymptotically unbiased
}
, (4)
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and call this the quantum CR bound. Notice that in this optimization, we also consider collective
measurement.

It is proved in [13] that

C
Q
θ (G) = lim

N→∞
NCNθ (G), (5)

where CNθ (G) is the quasi-CR bound of the model {ρ(θ)⊗N |θ ∈ �}. Because [13] is hard to
access, a sketch of the argument is given.

From mostly the same consideration as in [9, 29], we have limN→∞N TrGVθ [MN ] �
C
Q
θ (G). Achievability is proved as follows.

Regard N i.i.d. pairs ρ(θ)⊗N of the unknown state ρ(θ) as N1 i.i.d pairs (ρ(θ)⊗N2)⊗N1

of ρ(θ)⊗N2 (N = N1N2), and perform the optimal separable measurement for the model
{ρ(θ)⊗N1 |θ ∈ �}. Then, N1C

N1
θ (G) is achieved. For any ε, if N1 is large enough, we have

C
Q
θ (G)− ε � N1C

N1
θ (G) from the definition (5) of CQθ (G). This concludes the proof that we

can construct the sequence of measurement which achieves CQθ (G)− ε for any ε.
In the pure-state model, as is shown in section 5, CQθ (G) = Cθ(G) holds, and the

achievability is rather trivial.
So far, we have considered mean square error only. However, if a measure g(θ̂ , θ) of error

satisfies the natural regularity condition such that∣∣∣∣g(θ + dθ, θ)−
∑
i,j

Gi,j dθ i dθj
∣∣∣∣ � A(θ, ε)‖dθ‖3, ∀ε > 0, ∀‖dθ‖ < ε,

and if we assume that the estimate θ̂ will be asymptotically normal, then, denoting∫
f (θ̂) tr ρ(θ)M(dθ̂ ) by Eθ [f (θ̂),M], we have Eθ [g(θ̂ ,N , θ), M̃N ] = TrGVθ [M̃N ]+o(1/N),

which implies that the infimum of limNEθ [g(θ̂N , θ),MN ] is also given by the quantum CR-
type bound CQθ (G) = Cθ(G).

3. Tangent space

In this section, we introduce notation and concepts concerning the tangent space Tρ(θ)(M),
for these are used to characterize non-commutativity later on. From here on, the argument θ
is often dropped.

Let P1 denote the totality of density operators of pure states in H. A map π from H to
P1 is defined by π(|φ〉) = |φ〉〈φ|, and its differential map is denoted by π∗. We identify a
tangent vector with a differential operator in the usual manner, and for X ∈ Tρ(P1) and for
Y ∈ T|φ〉(H), Xρ and Y |φ〉 are seen as representations of X and Y , respectively.

The horizontal lift |lX〉 of a tangent vector X ∈ Tρ(P1) to |φ〉 ∈ π−1(ρ(θ)) is an element
of H which satisfies π∗(|lX〉) = Xρ and 〈lX|φ〉 = 0.

Denote by |li(θ)〉 a horizontal lift of ∂i ∈ Tρ(θ)(M); then spanR{|li〉|i = 1, . . . , m} is
a representation of Tρ(θ)(M) because of the unique existence of the horizontal lift, which is
proved as follows. |lX〉 = (1/2)Xρ|φ〉 is easily checked to be a horizontal lift of X. To prove
the uniqueness, it suffices to show that 〈l|φ〉 = 0 and 0 = |l〉〈φ| + |φ〉〈l| imply |l〉 = 0.
Multiplication by |φ〉 of both sides of 0 = |l〉〈φ| + |φ〉〈l| proves the statement.

Using the horizontal lift, we introduce the inner product 〈·, ·〉ρ , which is called the Fubini–
Study metric [23], inT (P1)via 〈X, Y 〉ρ = Re 〈lX|lY 〉. LetU be an arbitrary unitary transform in
H, and denote byU∗ its differential map. Then, we have 〈U∗X,U∗Y 〉UρU∗ = Re 〈UlX|UlY 〉 =
〈X, Y 〉ρ , or the invariancy of 〈·, ·〉ρ by unitary transform. Notice 〈·, ·〉ρ is the only invariant
metric, for Re 〈lX|lY 〉 is the only strictly positive bilinear map from H × H to R, which is
invariant by the action of unitary operator (here, we ignored the difference by a constant
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factor). Limit the inner product 〈·, ·〉ρ to T (M), and the metric tensor of the inner product
〈·, ·〉ρ(θ) is called the SLD Fisher information matrix and denoted by J S(θ). Throughout the
paper, we assume that J S(θ) is strictly positive.

If we write X∗Y means [〈xi |yj 〉] for the ordered pairs X = [|x1〉, |x2〉, . . . , |xm〉] and
Y = [|y1〉, |y2〉, . . . , |ym〉], J S = Re L∗L, where L is the ordered pair [|l1〉, |l2〉, . . . , |lm〉]. We
also define the matrix J̃ by Im L∗L.

Some historical remarks. Helstrom [2,3] defined the symmetric logarithmic derivative (SLD)
Fisher information matrix by J S = [Re tr ρLSi L

S
j ] where LSi is the SLD defined as a solution

to the equation

∂iρ = 1
2 (L

S
i ρ + ρLSi ), LSi = (LSi )

†. (6)

Note that LSi is dependent on θ , and whenever it is necessary, we explicitly write LSi (θ).
While the SLD is defined uniquely by (6) in the case where ρ is faithful, in the pure-state
case, the SLD has the arbitrariness which corresponds to the kernel of ρ, and Fujiwara and
Nagaoka [19] showed that J S(θ) is uniquely defined regardless of this arbitrariness. Notice
that in our definition, uniqueness of the SLD Fisher information matrix is trivial.

Let us define the linear transform Dθ in Tρ(θ)(M) such that DθX ∈ Tρ(θ)(M) is the image
of the projection ofπ∗(i|lX〉) ∈ Tρ(θ)(P1)onto Tρ(θ)(M)with respect to the inner product 〈·, ·〉ρ .
Hereafter, we drop the argument θ for simplicity. The matrix which corresponds to D is J S−1J̃ ,
and the eigenvalue of D is of the form ±iβj or 0, where 0 � βj � 1. The model is said to be
quasi-classical at θ if D = 0, or equivalently, J̃ = 0. The model is said to be coherent at θ if
all of the eigenvalues of D are ±i. The dimension m of the parameter is even if the model is
coherent. The definition of the coherency directly yields lemma 1.

Lemma 1. The model M is coherent at θ if and only if spanR{iL} is identical to spanRL, or
equivalently, if and only if spanR{L, iL} is identical to spanRL, or equivalently, if and only if
the dimension of spanCL is m/2.

Lemma 2. The model is coherent at θ if and only if |det J S | = |det J̃ |.
Proof. 0 � βj � 1 leads to | det J S−1J̃ | � 1, where the equality is established if and only if
βj = 1 for every j . Hence, we have the lemma. �

4. Reduction of the problem

In this section, we present the commuting theorem and the reduction theorem, and by use of
these theorems, we reduce the determination of the CR-type bound, which is a minimization of
a functional of the POM, to the minimization of function of finite numbers of finite-dimensional
vectors. The proof of the commuting theorem is in the appendix.

Theorem 1 (commuting theorem). If there exists an unbiased POMM such that

|xi〉 =
∫
(θ̂ i − θ i)M(dθ̂ ) |φ〉,

V[M] = Re X∗X,
(7)

then

Im X∗X = 0 (8)

holds true. On the other hand, if (7) holds true, then there exists a projection-valued and
unbiased POM E such that (7) holds, and the number of elements of its support is m + 2, and
E({θ̂0}) is a projection onto the orthogonal complement subspace of spanC{X}.
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Theorem 2 (reduction theorem). Let M be an m-dimensional manifold in P1, and B be
a system {|φ′〉||l′i〉, i = 1, . . . , m} of vectors in C

2m+1 such that 〈φ′|l′j 〉 = 〈φ|lj 〉 = 0,
〈l′i |l′j 〉 = 〈li |lj 〉, for any i, j . Then, for any locally unbiased POM M , there is a projection-
valued POM E in C

2m+1 such that

|xi〉 =
∫
(θ̂ i − θ i) E(dθ̂ )|φ′〉 ∈ C

2m+1, (9)

〈xi |φ′〉 = 0, (10)

Re X∗L′ = Im, (11)

V[M] = Re X∗X, (12)

where X = [|x1, . . . |xm〉], L′ = [|l′1, . . . |l′m〉], and Im is an identity matrix in C
m.

Proof. For any locally unbiased POM M , there exists a Hilbert space HM and a projection-
valued POM EM in HM which satisfies M(B) = PE(B)P , where P is the projection onto
H, by virtue of Naimark’s theorem (see [15, pp 64–8]). Note that EM is also locally unbiased.
Let us define |yi〉 = ∫

(θ̂ i − θ i) EM(dθ̂ )|φ′〉. Mapping spanC{|φ〉, |li〉, |yi〉|i = 1, . . . , m}
isometrically onto C

2m+1 so that {|φ〉, |li〉|i = 1, . . . , m} are mapped to {|φ′〉, |l′i〉|i =
1, . . . , m}, we denote the images of {|yi〉|i = 1, . . . , m} by {|xi〉|i = 1, . . . , m}. Then,
by virtue of the commuting theorem, we can construct a projection-valued POM E in C

2m+1

satisfying the equations (9)–(12). �

By virtue of the reduction theorem, the quantum CR-type bound is the minimization of
Re TrGX∗X, where |xi〉 runs all the vectors in C

2m+1/{C|φ′〉} which satisfy (8) and (11).
Now, the problem is simplified to a large extent, because we only need to treat vectors in C

2m+1

instead of the POM.

5. Holevo’s bound and uselessness of collective measurement

Holevo’s bound is defined by

CH(G) = inf{TrGRe Y∗Y + Tr absG Im Y∗Y| |yi〉 ∈ spanC{L′} (i = 1, . . . , m),

Re Y∗L′ = Im},
in analogy with the faithful-model case (see [15, p 279]). Here, Tr absAmeans the sum of the
absolute values of the eigenvalues of the matrix A. The proof of the following theorem is to
be found in the appendix.

Theorem 3 (CH(G) = C(G)). Denote by CH,N the Holevo’s bound of the model
{ρ(θ)⊗N |ρ(θ) ∈ M}. Then, we have

NCH,N(G) = CH(G), (13)

whose proof is in the appendix. The equation (13) leads to the following theorem, which means
that the use of collective measurement does not improve the first-order asymptotic term of the
error:

Theorem 4 (C(G) = CQ(G)). Because of this theorem, our new method for calculating the
quasi-quantum CR-type bound actually gives the quantum CR-type bound.
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6. SLD CR-type inequality

When G = diag(g1, . . . , gm), C(G) is the infimum of the weighted sum of the mean square
errors of the θ̂ i . Exchanging the infimum and the sum, we have

CQ(G) = C(G) �
m∑
i=1

gi

(
inf

M: locally unbiased
[V[M]]ii

)
. (14)

The equality in (14) does not always holds. For, because of non-commutativity, often there is
no POM which estimates θ i and θj simultaneously precisely. Hence, the difference between
the two sides of the inequality (14) is considered to be an effect of non-commutativity. In this
section, it is shown that this difference vanishes if and only if the model is quasi-classical.

The equality CQ(G) = C(G) = CH(G) leads to

CQ(G) � inf{Re TrGY∗Y| |yi〉 ∈ spanC{L′} (i = 1, . . . , m),Re L∗Y = Im}.
Noting that Y = L′J S−1 is the only element of spanC{L′} which satisfies (11), we have the SLD
CR-type inequality [2, 3, 18, 19],

CQ(G) � TrG(J S)−1,

where for the equality to be established, the following is necessary:

X = L′J S−1 =
[∑

k

[J S−1]j,k|lk〉, j = 1, . . . , m

]
. (15)

As is proved in the appendix, when the matrix G is diagonal, we have

TrGJS−1 = the right-hand side of (14). (16)

Therefore, to prove our assertion, it suffices to check the necessary and sufficient condition for
the equality in the SLD CR-type inequality to be achieved.

Theorem 5. The equality in the SLD CR-type inequality is established if the model is quasi-
classical. Conversely, if the model is quasi-classical, the lower bound is achieved by a
projection-valued POM.

Proof. If the equality is established, then by virtue of (A.1) and (15), it is proved that the model
is quasi-classical. Conversely, if J̃ = 0, then by virtue of the commuting theorem, there exists
a projection-valued POM E such that

∑
k[J

S−1]j,k|lk〉 = ∫
(θ̂ j − θj ) E(dθ̂ )|φ〉. Elementary

calculations show that the mean square matrix of this POM equals J S−1. �
Notice that this theorem is true even if G is not diagonal. When the parameter is one

dimensional, as is proved by Fujiwara and Nagaoka [19], the equality in the SLD CR-
type inequality holds. For the horizontal lift |li〉, written as (1/2)LSi |φ〉, theorem 5 and the
commuting theorem lead to the following Fujiwara condition [24]: the equality in the SLD
CR-type inequality is established if and only if SLDs {LSi |i = 1, . . . , m} can be chosen such
that [LSi , L

S
j ] = 0, (i = 1, . . . , m, j = 1, . . . , m).

Fujiwara’s condition is much harder to check than ours, because to deny the attainability
of the bound, [LSi , L

S
j ] �= 0 needs to be checked for all possible variations of SLDs. Still, it

should be noted that Fujiwara’s theorem implies that non-commutativity of the theory is the
reason that the two sides of (14) are not necessarily equal. Hence, we can say metaphorically
that the equality in the inverse of SLD Fisher information matrix is attainable if and only if
any two components of the parameter ‘commute’ at θ .

Another ‘ground’ for this metaphor is the following. Often, a model is defined by an
initial state and generators:

ρ(θ) = π(|φ(θ)〉), ∂i |φ(θ)〉 = iHi(θ)|φ(θ)〉, θ ∈ � ⊂ R
m.
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Then, the horizontal lift |li〉 can be written as i(Hi − 〈φ|H |φ〉)|φ〉. Therefore, the equality in
the inequality (14) is established if there are generators such that [Hi(θ),Hj (θ)] = 0.

Example. Hi(θ) is the position shift operator Pi of the ith particle.

Example. We define spin rotation model Ms,m [26] by

ρ(θ) = π{exp[iθ1(sin θ2Sx − cos θ2Sy]|s,m〉}, 0 � θ1 < π, 0 � θ2 < 2π,

where Sx , Sy , Sz are spin operators, |s,m〉 is the simultaneous eigenstate of Sz and the total
spin, Sz|s,m〉 = m|s,m〉, and (S2

x + S2
y + S2

z )|s,m〉 = s(s + 1)|s,m〉. s is a half-integer,
and m = −s,−s + 1/2, . . . , s − 1/2, s. Letting the eigenvalues of D be ±iβ, we have
β = m/(s2 + s −m). Therefore, when s = 1, 2, . . . , m = 0, the model is quasi-classical.

7. The coherent model

In contrast with the previous section, the coherent case, where the absolute values of eigenvalues
of D are maximal, is studied here. The coherent model is worthy of attention first because
there are several physically important models which are coherent, and secondly because the
coherent model can be viewed as the model with the strongest non-commutativity as is shown
in section 8 in the case of the two-dimensional parameter model.

Fujiwara and Nagaoka [20] determined the quantum CR-type bound of the two-parameter
coherent model. In the following, more generally, we treat the bound of the coherent model
with an arbitrary-dimensional parameter.

Noting that the only system Y of vectors in spanR{L′} which satisfies Re Y∗L′ = Im is
Y = L′J S−1 in the coherent model case, lemma 1 leads to

CQ(G) = CH(G) = TrGJS−1 + Tr absGJS−1J̃ J S−1.

In particular, if the measure g(·, ·) of the error is invariant under unitary transformation, as is
mentioned in section 3, we can put g(θ + dθ, θ) = ∑

i,j J
S
i,j dθ i dθj + o(||dθ ||2) without loss

of generality, and we have

inf lim
N→∞

Ng(θ̂, θ) = CQ(J S) = C(J S) = 2m.

Example (squeezed-state model). The squeezed-state model [25] is defined by

ρ(z, ξ) = π(D(z)S(ξ)|0〉), z, ξ ∈ C,

where S(ξ) = exp[(1/2)(ξa+2 − ξa2)], D(z) = exp(za+ − za), and |0〉 is the vacuum state.
Letting z = 2−1/2(θ1 +iθ2),Q = 2−1/2(a+a+), and ξ = θ3e−2iθ4

, where 0 � θ3, 0 � θ4 < π ,
we have

J S = 1

2




cosh 2θ3 − sinh 2θ3 cos 2θ4 sinh 2θ3 sin 2θ4 0 0
sinh 2θ3 sin 2θ4 cosh 2θ3 + sinh 2θ3 cos 2θ4 0 0

0 0 1 0
0 0 0 sinh2 2θ3


 ,

J̃ = 1

2




0 1 0 0
−1 0 0 0
0 0 0 − sinh 2θ3

0 0 sinh 2θ3 0


 .

By lemma 2, coherency is checked: |det J S | = |det J̃ | = 1
4 sinh2 2θ3.
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Example. The models {ρ(z)|ρ(z) = ρ(z, ξ0), z ∈ C}, and {ρ(ξ)|ρ(z) = ρ(z0, ξ), ξ ∈ C},
where ρ(z, ξ) is defined in the previous example, are coherent. The coherency is checked by
use of the lemma 2.

Example. In the spin rotation model Ms,m, Fujiwara and Nagaoka [20] have shown that if
m = s, the model is coherent.

Example (total-space model). The total-space model is the space of all the pure states P1

in finite-dimensional Hilbert space H [1]. If spanR{L} is invariant upon multiplication by the
imaginary unit i, then by virtue of lemma 1, the model is coherent. Massar and Popescu [8]
and Hayashi [12] studied this case, taking the measure of the error to be a unitary invariant,
while in our case the measure of the error can be arbitrary.

8. The model with a two-dimensional parameter

So far we have studied two special cases. In this section, we study the intermediate case in the
model with a two-dimensional parameter.

Let us define

V = {V |V = TrGV[M], M is locally unbiased},
inf V = {V |V = argmin

V∈V
TrGV, ∃G > 0}.

As is proved in the appendix, we have

det
(√
J SV

√
J S − I2

)1/2
+

(
1

β2
− 1

)1/2

Tr
(√
J SV

√
J S − I2

)1/2 = 1, β �= 0,

V = J S−1, β = 0.
(17)

In the following, we use notation like inf Vθ (M), βθ(M),CQθ (G, M), J S(θ,M) to reveal
the dependence of these values on θ and M.

Theorem 6. In the two-dimensional model, if βθ(M) > βθ ′(M′) = β ′ and J S(θ,M) =
J S(θ ′,M′) = J holds, then for every V ∈ inf Vθ (M), there exists V ′ ∈ inf Vθ ′(M′) such that
V > V ′, which implies CQθ (GM) > Cθ ′(GM′) for any G > 0.

Proof. For V ∈ inf Vθ (M), V ′ = a(V − J S−1) + J S−1, where 0 < a < 1 is a solution to

a2 det(
√
JV

√
J − I2)

1/2 + a

(
1

β ′2 − 1

)1/2

Tr(
√
JV

√
J − I2)

1/2 = 1,

is a member of inf Vθ ′(M′), and satisfies V > V ′. �

These theorems imply that if β is larger, the difference between the two sides of (14)
is larger, and, remembering the discussion in section 6, non-commutativity of the model is
stronger. If we take the measure g(·, ·) of the error to be unitary invariant, we obtain

inf lim
N→∞

Ng(θ̂, θ) = CQ(J S) = 4

1 + (1 − β2)1/2
, (18)

which is increasing in β (for the proof of the equation, see the appendix). All of these
arguments support the assertion that β is a good measure of non-commutativity. In particular,
the quasi-classical model is ‘commutative’, and the coherent model is the model with ‘strongest
non-commutativity’.
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It is pointed out that J̃ is a curvature form of the celebrated Berry phase, and that in the
two-dimensional parameter model, β is Berry’s phase per unit area, where the unit of area is
measured with respect to the Fubini–Study metric [27].

Example (shifted-number-state model [26]). The shifted-number-state model Mn is defined
by ρ(θ) = π [D(θ1 + iθ2)|n〉], where |n〉 is the nth number state. Then, we have J S(θ,Mn) =
(n + (1/2))I2, and βθ(Mn) = 1/(2n + 1). As n tends to infinity, βθ(Mn) goes to 0 and Mn

approaches a quasi-classical model.

Example. In the spin rotation model, we have βθ(Ms,m) = m/(s2 +s−m2). Ifm = αs, where
α < 1 is a constant, βθ(Ms,m) tends to 0 as s → ∞, and the model tends to be quasi-classical.
However, if m = s, the model Ms,m is coherent for any s.

Abe [26] calculated the Gaussian curvature of Mn and Ms,m, and showed they tend to
0 in the classical limits, n → ∞ and s → ∞, respectively. When m = s, however, Ms,m

remains coherent and never becomes commutative in the classical limit, although Gaussian
curvature vanishes.

Among the shifted-number-state models, M0 has strongest non-commutativity. In
addition, its quantum CR-type bound is largest, i.e., CQθ (M0) � C

Q
θ (Mn) for any n, because

of theorem 6 and the following theorem:

Theorem 7. In the two-dimensional model, if βθ(M) = βθ ′(M′) and J = J S(θ,M) <

J S(θ ′,M′) = J ′ holds, then for every V ∈ inf Vθ (M), there exists V ′ ∈ inf Vθ ′(M′) such
that V > V ′, which implies CQθ (GM) > C

Q
θ ′ (GM′) for any G > 0.

Proof. Letting V be a member of inf Vθ (M) and O be an orthogonal matrix, V ′ =
J ′−(1/2)OJ 1/2V J 1/2OTJ ′−(1/2) is a member of inf Vθ ′(M′). Choose O such that J 1/2V ′J 1/2

and OJ 1/2V J 1/2OT commute. Then, noting that det JV > det JV ′ and Tr JV > Tr JV ′ are
true, we have J 1/2V J 1/2 > J 1/2V ′J 1/2, which means V > V ′. �

This seems contradictory, because often the vacuum state is often referred to as ‘the
minimum-uncertainty state’. However, notice that the optimal POM for estimating the mean
values of position and momentum is, in general, not the joint measurement of position and
momentum in Holevo’s sense (see [15, p 120]). Therefore, the uncertainty relation does not
set a limit on the quantum CR-type bound in a straightforward manner. This point will be
discussed elsewhere [28].

9. Conclusions

A new technique for determining the quasi-quantum CR-type bound of the pure-state model
is proposed. As the quasi-quantum CR-type bound is equal to the quantum CR-type bound
in the pure-state case, this method gives the quantum CR-type bound at the same time. By
use of the reduction theorem in section 4, we can reduce the optimization of the POM to the
optimization of finite-dimensional vectors.

The method is successfully applied to the proof of the achievability of Holevo’s bound,
and to the calculation of the explicit form of the quantum CR-type bound for various models.

The fact that the quantum CR-type bound is equal to the quasi-quantum CR-type bound
means that the use of collective measurement is not effective in pure-state models, so far as
the first-order term of the error is concerned.

The investigation of the quantum CR-type bound demonstrated that eigenvalues of the
eigenvalue of the linear transform D nicely characterize the non-commutativity of the model.
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Appendix. Proofs

Proof of the commuting theorem. The following inequalities are proved in almost the same
manner as the faithful-state case (see [15, pp 88–9]):

V[M] � Re X∗X, V[M] � X∗X. (A.1)

Therefore, if (7) holds, we have Re X∗X � X∗X, which implies (8).
Conversely, let us assume that (8) holds true. By Schmidt’s orthonormalization, from

{|φ〉, |x1〉, . . . , |xm〉} we obtain the orthonormal system {|bi〉|i = 1, . . . , m + 1} of vectors
such that |xi〉 = ∑m+1

j=1 λ
i
j |bj 〉, λji ∈ R, i = 1, . . . , m, j = 1, . . . , m + 1. Let O = [oij ] be

an (m + 1) × (m + 1) real orthogonal matrix such that 〈φ| ∑m+1
j=1 o

i
j |bj 〉 �= 0. Then, denoting∑m+1

j=1 o
i
j |bj 〉 by |b′i〉, and

∑m+1
j=1 λ

i
j o
k
j /〈b′k|φ〉 by θ̂ ik , we obtain an unbiased POM which meets

the conditions as follows:

E({θ̂k}) = |b′k〉〈b′k| (k = 1, . . . , m + 1), E({0}) = I −
m+1∑
k=1

|b′k〉〈b′k|.

Proof of theorem 3. Decompose |xi〉 ∈ C
2m+1/{C|φ′〉} into |xi〉 = |yi〉 + |zi〉, where |yi〉 ∈

spanC{L′} and |zi〉 ∈ C
2m+1/spanC{L′, |φ′〉}, and denote [|y1〉, . . . , |ym〉] and [|z1〉, . . . , |zm〉]

by Y and Z, respectively. Then, let us consider the minimization of Re Tr X∗XG =
Re Tr Y∗YG + Re Tr Z∗ZG with Y fixed. Let us define

Lag(X) = Re Tr X∗XG + Tr Im X∗X8,

where 8 is an m × m antisymmetric real matrix. Differentiation with respect to Z yields
Z(G− i8) = 0, which, multiplied by Z∗ on both sides, leads to

√
GRe Z∗Z

√
G = −

√
G Im Z∗Z

√
G

√
G−18

√
G−1,

√
G Im Z∗Z

√
G =

√
GRe Z∗Z

√
G

√
G−18

√
G−1.

(A.2)

Therefore, we have,√
GRe Z∗Z

√
G[Im + (

√
G−18

√
G−1)2] = 0. (A.3)

For
√
G Im Z∗Z

√
G and

√
G−18

√
G−1 antisymmetric, and

√
GRe Z∗Z

√
G symmetric and

strictly positive, equation (A.2) implies that√
GRe Z∗Z

√
G = O diag(|a1b1|, . . . , |ambm|)OT, (A.4)

where O is an orthogonal matrix, and ai, bi (i = 1, . . . , m) are the eigenvalues of√
G Im Z∗Z

√
G and

√
G−18

√
G−1, respectively. Equations (A.3) and (A.4) lead to

Tr Re Z∗ZG = ∑m
i=1 |ai |. Noting that Im X∗X = Im Y∗Y+Im Z∗Z = 0, we have Tr Re Z∗ZG =

Tr abs Im Y∗YG, which leads to

inf
Z

Tr Re X∗XG = TrGRe Y∗Y + Tr absG Im Y∗Y, (A.5)

or CH(G) = C(G).
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Proof of equation (13). Consider the model {ρ(θ)⊗N |ρ(θ) ∈ M}, and denote by |lNi 〉 the
horizontal lift of the tangent vector ∂i[ρ(θ)⊗N ]. Then, we have 〈lNi |lNj 〉 = N〈li |lj 〉 (i =
1, . . . , m, j = 1, . . . , m), which implies

CH,N(G) = inf
Y

{TrGRe Y∗Y + Tr absG Im Y∗Y|Re Y∗√NL′ = Im}

= 1

N
inf√
NY

{TrGRe (
√
NY)∗(

√
NY)

+ Tr absG Im (
√
NY)∗(

√
NY)|Re (

√
NY)∗L′ = Im}

= 1

N
inf

Y
{TrGRe Y∗Y + Tr absG Im Y∗Y|Re Y∗L′ = Im}

and we have equation (13).

Proof of (16). Let E(i) be a projection-valued POM such that
∫

R
x E(i)(dx) =∑m

j=1[J S−1]ijLSj , andMp be a locally unbiased POM at θ such that

Mp(B) = piE
(i)({θ i + pi(x − θ i)|x ∈ Bi}), B = {θ1} × · · · × Bi × · · · × {θm},

where p = [pi] (i = 1, . . . , m) satisfies
∑
i pi = 1 and pi � 0, and Bi (i = 1, . . . , m) are an

arbitrary measurable set. Then, we have [V [Mp]]ii = (1/pi)[J S−1]ii which leads to

inf{[V [M]]ii |M is locally unbiased at θ} � inf

{
[V [Mp]]ii

∣∣∣∣
∑
i

pi = 1, pi � 0

}
= [J S−1]ii .

This equation, combined with SLD CR-type inequality, leads to the theorem.

Proof of (17) and (18). Define a function Lag(X) by

Lag(X) = Re Tr X∗XG− 2 Tr[(Re X∗L′ − I2):] + Tr Im X∗X8, (A.6)

where :,8 are real 2 × 2 matrices and 8 is antisymmetric. Then, differentiation of (A.6)
with respect to X yields X(G − i8) = L′:. Multiplication by X∗ and taking the real parts of
both sides of this equation, together with (8) and (11), yield: = Re X∗XG. Therefore, putting
V = Re X∗X, we have

X(G− i8) = LVG. (A.7)

Equation (A.7), mixed with (8), leads to

(G− i8)V (G− i8) = GV L∗LVG. (A.8)

LetV be a solution of (A.8). Then X = UV 1/2, whereU is a 5×2 complex matrix such that
U ∗U = I2, satisfies (8) and (A.7). X = UV 1/2 also satisfies (11), because VG = Re X∗LVG
is obtained by multiplying by X∗ and taking the real parts of both sides of (A.7). Hence, our
task is to solve (A.8).

Putting V ′ = J S(1/2)V J S(1/2), G′ = J S−(1/2)GJ S−(1/2), 8′ = J S−(1/2)8J S−(1/2), and
J̃ ′ = J S−(1/2)J̃ J S−(1/2), equation (A.8) can be written as

(G′ − i8′)V ′(G′ − i8′) = G′V ′(I2 + iJ̃ ′)V ′G′. (A.9)

Here, without loss of generality, we can put J̃12 = −J̃21 = β.
If we put G = J S , or equivalently G′ = I2, equation (A.9) is easily solved, and we

obtain (18).
Letting O be an arbitrary 2 × 2 real special orthogonal matrix, we have OJ̃OT = J̃ and

O8OT = 8. Therefore, letting u, v be eigenvalues of a solution V ′ to (A.9), diag(u, v) is also
a solution. Conversely, if diag(u, v) is a solution, Odiag(u, v)OT is also a solution for every
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special orthogonal matrix O. After a few lines of calculations, the necessary and sufficient
condition for 8′ and G′ which ensures that (A.9) exists is

β[(u− 1)(v − 1)]1/2 ± (1 − β2)1/2[(u− 1)1/2 + (v − 1)1/2] = β.

Drawing the graph (not shown), we see that the lower sign in the equation corresponds to the
set of stationary points, and the upper sign gives inf V . Finally, replacing (u− 1)1/2(v− 1)1/2

and (u− 1)1/2 + (v− 1)1/2 by det(V ′ − I2)
1/2 and Tr(V ′ − I2)

1/2, respectively, we obtain (17).
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